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Abstract By making use of Matula numbers, which give a 1-1 correspondence
between rooted trees and natural numbers, and a Gödel type relabelling of quantum
states, we construct a bijection between rooted trees and vectors in the Fock space. As
a by product of the aforementioned correspondence (rooted trees ↔ Fock space) we
show that the fundamental theorem of arithmetic is related to the grafting operator, a
basic construction in many Hopf algebras. Also, we introduce the Heisenberg–Weyl
algebra built in the vector space of rooted trees rather than the usual Fock space.
This work is a cross-fertilization of concepts from combinatorics (Matula numbers),
number theory (Gödel numbering) and quantum mechanics (Fock space).
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1 Introduction

The Matula (M) numbers [1,2], which assign a 1-1 correspondence between rooted
trees and natural numbers, were introduced back in 1968 in a short abstract [1] and
have found applications mainly in the context of chemistry, e.g., various properties of
rooted trees like topological indices are listed in [3] as a function of the M numbers. See
also [4–7]. Matula ended his definition pointing out: “Certain interesting relationships
between the theories of primes and trees will be developed utilizing this ‘natural’
correspondence.” This work points towards giving a support to this affirmation in the
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context of posterior developments on Hopf algebras [8–26] and quantum mechanics
[27–29].

Graphical methods, e.g., trees (rooted, planar, etc), are recurrent objects in many
algebraic constructions underlying important developments, such as, the Grossman–
Larson (G–L) Hopf algebra [8–10] to compute certain differential operators, the cel-
ebrated Connes–Kreimer (C–K) Hopf algebra of renormalization in quantum field
theory [11–13], C–K Hopf algebra of planar decorated rooted trees [14–16], the con-
nection between G–L and C–K Hopf algebras [17,18], the interplay of Runge–Kutta
methods and renormalization [19–21], QED [22], many-body calculations [23–25],
Butcher group in numerical analysis [30,31], Heisenberg–Weyl algebra [32–35], etc.
Therefore, due to the broad interest in constructions involving graphical methods, it
is clear that every possible way of re-expressing them is worth of consideration, spe-
cially, if it unravels connections between apparent dissimilar areas of general interest,
like combinatorics, number theory and quantum mechanics.

In this work, based upon Matula numbers [1] and a Gödel type relabelling of quan-
tum states due to Spector [27–29], we give a 1-1 correspondence between rooted trees
and Fock space vectors. With a view towards establishing connections we revisit two
fundamental concepts: the grafting operator (see, e.g., [19,20]), a common construc-
tion in many Hopf algebras, and the Heisenberg–Weyl algebra (see, e.g., [32–35] and
references therein) in the realm of quantum many-body theory. More precisely, we
introduce the counterparts of the grafting operator in Fock space and the Heisenberg–
Weyl algebra in the space with basis the rooted trees.

In the context of chemistry, we recall that the Heisenberg–Weyl algebra is a recurrent
and important construction, e.g., in the context of the occupation number represen-
tation of state vectors in the formalism of second quantization describing a quantum
system of identical bosonic particles (see, e.g., Ref. [36]), in the formulations of chem-
ical reactions based on the second quantization formalism (for a review see Ref. [37]),
etc. We introduce here creation and annihilation operators acting on rooted trees that
are the direct counterparts of the usual bosonic creation and annihilation operators (the
basic building blocks of the Heisenberg–Weyl algebra). In the occupation number rep-
resentation, a generic Fock state vector of a many-body bosonic system is constructed
by the action of creation operators on the vacuum state of the underlying physical
Hilbert space (see, e.g., the lattice model considered in Ref. [29] or the bosonic quan-
tum system made of indistinguishable particles of, e.g., Refs. [38,39]) and we show
here that this is nothing more than the grafting operator acting on rooted trees. There-
fore, our results establish new representations (and consequent re-interpretations) of
recurrent concepts in quantum chemistry which are at the same time of basic relevance
and of a fundamental nature. Our main objective here is to establish a first step towards
the construction of a bridge between the methods of many-body quantum theory, a
ubiquitous theme in quantum chemistry, and the structure of some important Hopf
algebras in a manner that a direct connection with concepts of number theory can
be pursued. The aforementioned bridge opens the way to tackle directly problems in
many-body quantum theory from the point of view of algebraic constructions based
on rooted trees (like the Hopf algebras mentioned above) and vice versa.

This work is organized as follows. In Sect. 2 we introduce the basic constructions
on rooted trees: Matula number and the grafting operator. In Sect. 3 we review briefly
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the Gödel type relabelling of quantum states due to Spector [27–29]. In Sect. 4 we
construct the grafting operator in Fock space and the Heisenberg–Weyl algebra on
rooted trees. Finally, in Sect. 5 we make some concluding remarks.

2 Matula numbers and the grafting operator

We begin introducing some fundamental definitions and fixing the notation. From this
moment on we establish the following convention, whenever we write tree we refer to
rooted tree. We start with

Definition 1 A rooted tree τ is a finite graph, connected and without loops, with a
special vertex v called the root r , i.e., v = r which has only outgoing edges.

E.g., we have

(1)

Definition 2 The degree d (or fertility) of the root vertex v = r is defined as the
number of outgoing edges from r .

E.g., the tree in Eq. (1) has d = 3.

We write the prime numbers in ascending order: p1 = 2, p2 = 3, p3 = 5, p4 = 7,

and so on. We set P = {2, 3, 5, 7, . . .}, N = {1, 2, 3, 4, . . .}, to
be the set of the primes, natural numbers and rooted trees, respectively. Throughout this
work we use the conventions pi , p j , pk ∈ P; a, b, i, j, k ∈ N; τ, τ ′, τk, τ

′
k ∈ T. Every

natural number a, b, n, etc can be written as a = ∏
p j |a p

α j
j , b = ∏

p j |b p
β j
j , n =

∏
p j |n p

ν j
j , etc, as a direct consequence of the fundamental theorem of arithmetic.

We define the map

p : N → P

k �→ p(k) = pk

and the inverse map

p−1 : P → N

pk �→ p−1(pk) = k
.

In words, the map p assigns to k ∈ N the prime number with index k, i.e., pk . The
inverse map p−1 identifies the index of the prime in which it acts.

Let us next define the M numbers following Ref. [2], which established a 1-1
correspondence between natural numbers and rooted trees.

Definition 3 Let τ be a rooted tree with root r . If τ has only one vertex, then
. If the number of vertices of τ is greater than 1, then we assign a
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number n(τ ) ∈ N to each rooted tree by

n(τ ) =
d∏

i=1

p(n(τi )), (2)

where τi , i = 1, . . . , d are connected components (there is a path that connects any
two vertices of τi ) of τ − r . n(τ ) is called the Matula (M) number of τ .

The inverse of the M number is the unique tree τ(n) associated to a given natural
number n.

Let us assign the M number to some simple trees. We will show that and

. We have

Also,

A list of M numbers up to 45 is given in Ref [2]. See also [40] for an alternative
definition of M numbers closely related to our observations (1) and (2) below.

For our purposes the basic observations, directly related to Definition 3 above, are
important:

(1) All prime numbers have a tree representation such that d = 1. Indeed, suppose on
the contrary that d > 1, then we have a product of primes by Eq. (2) with at least
two factors, which is an absurd. Therefore, we must have d = 1 for all τ obeying
n(τ ) = p ∈ P.

We introduce the set such that d = 1, i.e., all trees
with roots of degree 1. Due to the observation (1) above we call all trees with
d = 1 prime trees (sometimes referred as primitive trees) and, as a consequence,
T is the set of all prime trees. We associate each pk with the rooted tree πτ(k), e.g.,

p4 = 7 ∼= .
(2) There is a natural operation on the set of rooted trees T called tree multiplication ∗

∗ : T × T → T

(τ1, τ2) �→ τ1 ∗ τ2 = τ,
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where

τ = {the new tree with d = d1 + d2 formed from

τ1 and τ2 by putting together their roots r1 and r2}.

E.g., for and we have . The commutative prop-
erty of the operation ∗ is a reflection of the fact that we are using rooted trees rather
than planar trees. We write τ k = τ ∗ · · · ∗ τ (τ appearing k times). At this stage
we naturally recognize a homomorphism between multiplication on trees (∗) and
multiplication on natural numbers (×). Indeed, setting τ = τ1 ∗ · · · ∗ τd , τ ′ =
τ ′

1 ∗ · · · ∗ τ ′
d ′ , τ̂i = τi if i = 1, . . . , d and τ̂i = τ ′

i−d if i = d + 1, . . . , d + d ′ we
have

n(τ ∗ τ ′) =
d+d ′
∏

i=1

p(n(τ̂i ))

=
d∏

i=1

p(n(τi )) ×
d ′
∏

j=1

p(n(τ ′
j ))

= n(τ ) × n(τ ′).

The identity here is .

Of course, since there is a bijection between natural numbers and trees, on rooted
trees we have counterparts of the maps p and p−1 defined in N and P, respectively.
We define the maps

π : T → T

τ �→ π(τ) = πτ

where πτ = {tree obtained from τ by attaching and edge to τ such that one vertex is
coincident with the root r of τ and the other vertex is the new root}. E.g., we have

Note that, as follows from the definition, πτ = π(τ) is a prime tree. The inverse map
with respect to π is given by

π−1 : T → T

πτ �→ π−1(πτ ) = τ
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where τ = {tree obtained from πτ by deleting the outgoing edge from the root}. Note
that the degree of the root of π−1(πτ ) = τ is such that d ≥ 1. E.g., we have

The definitions of the maps p, p−1 and their counterparts π, π−1 are crucial for
the definitions to come.

Now we establish the underlying vector space with basis the rooted trees and the
associated inner product. We follow closely the notation of Ref. [17], except that we
place the root of a given tree at the bottom rather than at the top. We let |τ | to be
the number of vertices of τ . We define Tn = {τ ∈ T : |τ | = n + 1} and write
k{T} = ⊕n≥0k{Tn} for the graded vector space over a field k of characteristic zero
(here we implicit assume this field to be R= the real numbers) with basis consisting of
elements belonging to T. Also, we let HK (the subscript K here stands for Kreimer)
to be the vector space built on monomials of rooted trees, i.e., forests (see Ref. [17]).
Each k{Tn} is itself a vector space. A typical element of k{T4} is

(3)

Following [17] we can endow k{T} with an inner product as follows

(τ, τ ′) = |SG(τ )|δτ,τ ′ , (4)

where δ is the Kronecker delta and SG is the symmetry group of τ (see Ref. [17] for
a precise definition). We define a linear map B+ : HK → k{T}

B+ : (τ1, . . . , τd) → B+(τ1, . . . , τd) = τ. (5)

or, equivalently,

B+(τ1, . . . , τd) = π(τ1) ∗ · · · ∗ π(τd)

= πτ1 ∗ · · · ∗ πτd . (6)

The operator B+ is sometimes known as the grafting operator. The inverse map can
be written as

B− : τ → B−(τ ) = (τ1, . . . , τd) (7)

or, equivalently,

B−(τ ) =
(
π−1 (

πτ1

)
, . . . , π−1 (

πτd

)) = (τ1, . . . , τd) . (8)
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Let us work out an example: take and to get

(9)

and

(10)

3 Gödel relabelling of quantum states due to Spector

To establish a connection with the structure presented above we now review briefly
the Göldel relabelling of quantum states due to Spector [27–29]. We will follow the
quantum system described in Ref. [29]. The construction here can be applied directly
to describe a bosonic quantum system made of identical particles in the second quan-
tization formalism. In this case, the relevant space is the bosonic Fock space = direct
sum of symmetrized tensor copies of L2(R3) (see Ref. [36]). In the occupation number
formalism for a bosonic system each vector in Fock space is represented by

|α1, α2, α3, . . . 〉 ∈ H = ⊗∞
k=1 Hk

with |α j 〉 ∈ Hj and α j ∈ N0 = N ∪ {0} meaning the excitation associated
with subsystem j . The inner product in H is given by 〈α1, α2, . . . |β1, β2, . . .〉 =
〈α1|β1〉〈α2|β2〉 · · · with Ô1 Ô2 · · · |α1〉|α2〉 · · · = Ô1|α1〉Ô2|α2〉 · · · where Ô j acts
in Hj . Each Hj ( j ∈ N ≡ {1, 2, . . .}) is the Hilbert space associated with a sin-
gle degree of freedom and described by a quantum harmonic oscillator. We write
|α j 〉 ∈ Hosc = Hj ∀ j for the eigenstate of the quantum mechanical harmonic oscilla-
tor, i.e., Ĥ j = N̂ j +1/2 = â†

j â j +1/2, [âi , â†
j ] = δi, j and |α j 〉 = (â†

j )
α j |0〉/√α j !. All

the other commutators involving âi and â†
i being zero: [âi , â j ] = 0 = [â†

i , â†
j ] ∀i, j .

The algebra generated by {1, â†
j , â j , N̂ j } is known as the Heisenberg–Weyl algebra.

It is a direct consequence of the commutation relations between â†
j and â j that the

following relations hold

â†
j |α j 〉 = √

α j + 1|α j + 1〉 (11)

and

â j |α j 〉 = √
α j |α j − 1〉. (12)

The basic ingredient behind the Gödel relabelling of quantum states due to Spector
[27–29] is the identification of each quantum state in |a〉 ∈ H with the factorization
of each a ∈ N as powers of prime numbers. More precisely, given N � a = pα1

1 ×
pα2

2 × pα3
3 × · · · = 2α1 × 3α2 × 5α3 × · · · we will identify p j �→ orbital in position

j and α j �→ |α j 〉 ∈ Hj .
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In Dirac ket notation we make the identification

|a〉 = |2α1 × 3α2 × 5α3 × · · · 〉
= |α1, α2, α3, . . .〉

=
(

â†
1

)α1

√
α1!

(
â†

2

)α2

√
α2!

(
â†

3

)α3

√
α3!

. . . |vac〉, (13)

where |vac〉 is the vacuum of the Fock space. (â†
i )αi means â†

i acting αi times in the
orbital located at i . The first equality in Eq. (13) follows from the usual factorization
of a natural number in terms of prime factors; the second equality follows from the
quantum mechanical representation of |a〉 with a ∈ N; the third equality follows from
the definition of the operator â†

j . E.g., take |a〉 = |1〉, |b〉 = |2〉 and |n〉 = |60〉, so that
we have:

|a〉 = |1〉 = |2α1=0 × 3α2=0 × 5α3=0 × 7α4=0 × · · · 〉
= |0, 0, 0, 0, . . .〉
= |vac〉,

|b〉 = |2〉 = |2β1=1 × 3β2=0 × 5β3=0 × 7β4=0 × · · · 〉
= |1, 0, 0, 0, . . .〉
=

(
â†

1

)β1=1 |vac〉

and

|n〉 = |60〉 = |2ν1=2 × 3ν2=1 × 5ν3=1 × 7ν4=0 × · · · 〉
= |2, 1, 1, 0, . . .〉

=
(

â†
1

)ν1=2

√
2!

(
â†

2

)ν2=1 (
â†

3

)ν3=1 |vac〉.

Note that the Gödel relabelling of quantum states due to Spector was crucial here
since it maps each Fock space vector into a state indexed by a natural number and the
connection of natural numbers with rooted trees is given by the M numbers.

Setting (τ(n) is the inverse of the M number)

|n) = |SG(τ (n))|1/2|n〉

we obtain

(n|n′) = |SG(τ (n))|1/2|SG(τ (n′))|1/2〈n|n′〉 = |SG(τ (n))|δn,n′, (14)

where we have used 〈a|b〉 = δa,b. Equation (14) is the equivalent of the inner product
in Eq. (4) on rooted trees.
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In order to get used with the correspondence rooted trees ↔ occupation number
formalism we give some examples. We have:

The equivalent of Eq. (3) is

−|9〉+ 1

5
|10〉+√

2|17〉 = −
(

â†
2

)2

√
2! |vac〉+ 1

5
â†

1 â†
3 |vac〉+√

2â†
7 |vac〉 ∈ H . (15)

Schematically, our procedure so far can be best summarized by the diagrams below,
which establish a 1-1 correspondence between vectors in k{T} and H

(1) From rooted trees to Fock space vectors

τ
Matula−−−→ |a(τ ) = 2α1 × 3α2 × 5α3 × · · · 〉 Spector−−−−→

(
â†

1

)α1

√
α1!

(
â†

2

)α2

√
α2!

(
â†

3

)α3

√
α3!

· · · |vac〉.
(16)

(2) From Fock space vectors to rooted trees

(
â†

1

)α1

√
α1!

(
â†

2

)α2

√
α2!

(
â†

3

)α3

√
α3!

· · · |vac〉 Spector−−−−→ |a = 2α1 × 3α2 × 5α3 × · · · 〉 Matula−−−→ τ(a).

(17)

4 Grafting operator in Fock space and Heisenberg–Weyl algebra on rooted trees

From now on we write | j1, . . . , jd〉 ∈ HK . We set n = ∏
p j |n p

ν j
j = p

ν j1
j1

×· · ·×p
ν jk
jk

=
p j1 × · · · × p jd (ν jl counts the number of times p jl appears in p j1 × · · · × p jd ), then
k ≡ ∑

j :p j |n 1 and d ≡ ∑
j :p j |n ν j . E.g., take n = 20 = 22 ×5 = (p j1 = 2)× (p j2 =

2) × (p j3 = 5) with j1 = 1 = j2 and j3 = 3, then k = 2 and d = 3. Although the
construction that follows below does not make reference to trees we still use the index
d (recall that we use d for the degree of the root r of τ ∼= |n〉) in n = p j1 × · · · × p jd
for clearness, i.e., to enhance the connection with the constructions of the B+ and B−
for rooted trees. In this way, motivated by the definitions of B+ and B− in Eqs. (5),
(6), we define the linear map B̂+ : HK → H

B̂+ : | j1, . . . , jd〉 → B̂+| j1, . . . , jd〉 = |n〉 (18)

or

B̂+| j1, . . . , jd〉 = |p( j1) × · · · × p( jd)〉
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= |p j1 × · · · × p jd 〉
= |p

ν j1
j1

× · · · × p
ν jk
jk

〉

=
(

â†
j1

)ν j1

√
ν j1 !

· · ·
(

â†
jk

)ν jk

√
ν jk !

|vac〉
= |n〉. (19)

The first and second equalities are the analogous of the equalities in Eq. (6) using the
correspondence π → p, τ → j and ∗ → ×. To obtain the last two lines we have
used Spector relabelling of quantum states of Eq. (13). The inverse map is

B̂− : |n〉 → B̂−|n〉 = | j1, . . . , jd〉 (20)

or

B̂−|n〉 = |p−1(p j1), . . . , p−1(p jd )〉 = | j1, . . . , jd〉, (21)

which are the analogous of Eqs. (7) and (8), respectively. It is interesting to interpret the
maps in Eqs. (19) and (21) from the point of view of Number Theory (NT) and many
body quantum theory. Given j1, . . . , jd , B̂+ selects the vector of the Fock space ν j1
times excited in orbital j1, ν j2 times excited in orbital j2, and so on until arrive at orbital
jk , or, using Spector identification, we could say that the resulting state |n〉 corresponds
to the product of the prime factors with indices j1, . . . , jd . Given |n〉 = |∏p j |n p

ν j
j 〉 =

|p j1 × . . . × p jd 〉 with d ≡ ∑
j :p j |n ν j , B̂− selects the monomials composed of the

indices j in p j in the prime number decomposition of n. The identifications above
are very compelling from the point of view of the interplay of NT and many-body
theory, because they are related to the fundamental theorem of arithmetic and admit
a corresponding occupation number interpretation. Let us work out an example: take
j1 = 1 and j2 = 4 to get

B̂+| j1, j2〉 = B̂+|1, 4〉 = |p(1) × p(4)〉
= |p1 × p4〉
= â†

1 â†
4 |vac〉

= |14〉. (22)

Also, since n = 14 = 2 × 7 = pν1=1
1 × pν4=1

4 , we have

B̂−|n〉 = B̂−|14〉 = |p−1 (p1) , p−1 (p4)〉 = |1, 4〉 (23)

with . Equations (22) and (23) are the analogous of Eqs. (9) and (10).

Now we show how to re-interpret the operators â†
j and â j by considering their action

on trees instead of the usual Fock space. We refer to α̂†
τ and α̂τ as the counterparts of
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â†
j and â j , respectively. For this purpose, we calculate the action of â†

j and â j in |n〉
in a way that a direct correspondence with rooted trees can be pursued. We have:

â†
jl
|n = p j1 × · · · × p jd = p

ν j1
j1

× · · · × p
ν jk
jk

〉
= √

ν jl + 1| . . . , ν j1 , . . . , ν jl + 1, . . . , ν jk · · · 〉
= √

ν jl + 1|p
ν j1
j1

× · · · × p
ν jl +1
jl

× · · · × p
ν jk
jk

〉
= √

ν jl + 1|n × p jl 〉 (24)

where we have used Eq. (11) for the first equality, the Gödel relabelling of quantum
states due to Spector in Eq. (13) for the first and second equalities and last line is a
direct consequence of the definition n = p

ν j1
j1

× · · · × p
ν jk
jk

. In a similar way we can
show

â jl |n = p j1 × · · · × p jd = p
ν j1
j1

× · · · × p
ν jk
jk

〉
= √

ν jl | . . . , ν j1 , . . . , ν jl − 1, . . . , ν jk . . .〉
= √

ν jl |p
ν j1
j1

× · · · × p
ν jl −1
jl

× · · · × p
ν jk
jk

〉
= √

ν jl |n′ ≡ n/p jl 〉, (25)

proceeding as in Eq. (24) except that we use Eq. (12) instead of Eq. (11).
Using our correspondence rooted trees ↔ occupation number formalism we get

p jk → πτ( jk ) = πτk ,× → ∗, ν jl (τl ) → number of times the tree πτl appears in
πτ1 ∗ · · · ∗ πτd . Therefore, we get

α̂†
τl
(τ = πτ1 ∗ · · · ∗ πτd ) = √

ν jl (τl ) + 1τ ∗ πτl (26)

and

α̂τl (τ = τ ′ ∗ πτl ) = √
ν jl (τl )τ

′, (27)

using the commutativity of ∗. Equations (26) and (27) for rooted trees are the coun-
terparts of Eqs. (24) and (25) in the occupation number formalism, respectively. Just
to get used to the meaning of the action of α̂†

τ�
on τ , the term τ ∗ πτl is the tree

obtained from τ by attaching the tree πτl to the root of τ . The algebra generated by
{1, α̂†

τ , α̂τ , ˆNτ ≡ α̂†
τ α̂τ } is the Heisenberg–Weyl algebra built on trees.

5 Concluding remarks

This work unravels the interplay of recurrent constructions on Fock space (Heisenberg–
Weyl algebra) and on graded vector spaces with basis elements trees (the grafting
operator). We believe this situation is promising, because, on the one hand, it reveals
new features of the Hopf algebra itself, e.g., we recognized the important role of the
fundamental theorem of arithmetic in the construction of the operators B+ and B− once
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we deal with the occupation number formalism where states are indexed by natural
numbers. Recall that Eqs. (18), (19), (20) and (21) are the counterparts of the definitions
(5), (6), (7) and (8), respectively. On the other hand, we have shown how to construct
the Heisenberg–Weyl algebra, usually described in the Fock space framework, on the
space made of rooted trees. We end up by saying that once a dictionary is established
between the basic building blocks of Hopf algebras built on graded vector spaces with
basis elements rooted trees and the counterparts in the Fock space, one can gain insight
on the structure of both pointing towards further explorations and connections. E.g., it
would be interesting to unveil other counterparts of rooted trees in the context of Fock
space vectors and vice versa. We would like to mention three particular examples. The
realization of the operator N (which play an important role in the C–K work of Ref.
[13] to establish a connection between the Hopf algebra of renormalization in quantum
field theory and the Hopf algebra associated to the computation of the transverse index
theory of foliations in the realm of non-commutative geometry) in Fock space should
follow from the results developed here. Another topic worth further investigation is
the representation of the results in Ref. [30] in the context of Fock space. Also, we
believe that it would be of interest to explore, e.g., the construction of generalized
Heisenberg–Weyl algebras in the context of graded vector spaces made of rooted trees
(for a recent review see Ref. [41]).

Acknowledgments This work was supported by Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq-Brazil) Grant 307617/2012-2. I would like to thank Profs. Ennio Gozzi and Michael
O’Carroll for support and Università Degli Studi di Trieste and ICTP for hospitality during November 2011
when part of this work was done. I also thank Prof. Loïc Foissy for kindly providing me his packages for
drawing trees in latex and Prof. John Butcher for encouragement.

References

1. D.W. Matula, SIAM Rev. 10, 273 (1968)
2. F. Göbel, J. Combin. Theory B 29, 141 (1980)
3. E. Deutsch, Discret. Appl. Math. 160(15), 2314 (2012)
4. S.B. Elk, J. Math. Chem. 4, 55 (1990)
5. I. Gutman, A. Ivic, Discrete Math. 150, 131 (1996)
6. I. Gutman, Y.-N. Yeh, Publ. Inst. Math. 53(67), 17 (1993)
7. E. Czabarka, L. Szekely, S. Wagner, Discret. Appl. Math. 157, 3314 (2009)
8. R.L. Grossman, R.G. Larson, J. Algebra 126(1), 184 (1989)
9. R.L. Grossman, R.G. Larson, Israel J. Math. 72, 109 (1990)

10. R.L. Grossman, R.G. Larson, Adv. Appl. Math. 35, 97 (2005)
11. D. Kreimer, Knots and Feynman Diagrams (Lecture Notes in Physics, Cambridge, 2000)
12. D. Kreimer, Adv. Theor. Math. Phys. 2, 303 (1998)
13. A. Connes, D. Kreimer, Commun. Math. Phys. 199, 203 (1998)
14. L. Foissy, Bull. Sci. Math. 126, 193 (2002)
15. L. Foissy, Bull. Sci. Math. 126, 249 (2002)
16. R. Holtkamp, Arch. Math. (Basel) 80(4), 368 (2003)
17. M.E. Hoffman, Trans. Am. Math. Soc. 355, 3795 (2003)
18. F. Panaite, Lett. Math. Phys. 51(3), 211 (2000)
19. Ch. Brouder, Eur. Phys. J. C 12, 521 (2000)
20. Ch. Brouder, Eur. Phys. J. C 12, 535 (2000)
21. Ch. Brouder, BIT 44, 425 (2004)
22. Ch. Brouder, A. Frabetti, J. Algebra 267, 298 (2003)
23. Ch. Brouder, G.H.E. Duchamp, F. Patras, G.Z. Tóth, Int. J. Quantam Chem. 112, 2256 (2012)

123



1814 J Math Chem (2013) 51:1802–1814

24. Ch. Brouder, F. Patras, Contemp. Math. 539, 1 (2011)
25. Ch. Brouder, A. Mestre, F. Patras, J. Math. Phys. 51, 072104 (2010)
26. Ch. Brouder, F. Patras, J. Math. Chem. 50, 552 (2012)
27. D. Spector, Commun. Math. Phys. 127, 239 (1990)
28. D. Spector, J. Math. Phys. 39, 1919 (1998)
29. D. Spector, Phys. Lett. A 140, 311 (1989)
30. J.C. Butcher, T.M.H. Chan, BIT 42, 477 (2002)
31. J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations (Wiley, Chichester, 1987)
32. P. Blasiak, A. Horzela, G.H.E. Duchamp, K.A. Penson, A.I. Solomon, J. Phys. Conf. Ser. 213, 012014

(2010).
33. P. Blasiak, G.H.E. Duchamp, A. Horzela, K.A. Penson, A.I. Solomon, J. Phys. A 41, 415204 (2008)
34. P. Blasiak, G.H.E. Duchamp, A.I. Solomon, A. Horzela, K.A. Penson, Adv. Theor. Math. Phys. 14(4),

1209 (2010)
35. P. Blasiak, Phys. Lett. A 374, 4808 (2010)
36. J.W. Negele, H. Orland, Quantum Many-Particle Systems (Addison-Wesley, Reading, 1988)
37. D.C. Mattis, M.L. Glasser, Rev. Mod. Phys. 70, 979 (1998)
38. A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Phys. Rev. A 81, 022124 (2010)
39. O.E. Alon, A.I. Streltsov, K. Sakmann, A.U.J. Lode, J. Grond, L.S. Cederbaum, Chem. Phys. 401, 2

(2012)
40. Y. Abe, Appl. Math. Lett. 7, 57 (1994)
41. M. Daoud, M.R. Kibler, J. Phys. A 45, 244036 (2012)

123


	Matula numbers, Gödel numbering and Fock space
	Abstract
	1 Introduction
	2 Matula numbers and the grafting operator
	3 Gödel relabelling of quantum states due to Spector
	4 Grafting operator in Fock space and Heisenberg--Weyl algebra on rooted trees
	5 Concluding remarks
	Acknowledgments
	References


